
Target NVIDIA and AMD with oneAPI and SYCL

Rafal Bielski – Codeplay Software

14 September 2023



Established 2002 in 
Edinburgh, Scotland.

Grown successfully to around 
100 employees.

In 2022, we became a wholly 
owned subsidiary of Intel.

Committed to expanding the 
open ecosystem for 
heterogeneous computing.

Through our involvement in 
oneAPI and SYCL 
governance, we help to 
maintain and develop open 
standards.

Developing at the forefront 
of cutting-edge research.

Currently involved in two 
research projects - SYCLOPS 
and AERO, both funded by 
the Horizon Europe Project.

Enabling AI & HPC To Be Open, Safe & Accessible To All

2



Write once.
Run anywhere.

No compromises on 
performance.

Open, cross-industry 
collaboration on standards.

Codeplay provides oneAPI plugins enabling SYCL to run on NVIDIA and AMD GPUs

Bringing oneAPI to NVIDIA and AMD GPUs



Write code using SYCL, and then run freely
across Intel, NVIDIA and AMD GPUs

Write once.
Run anywhere.



No compromises on 
performance.

SYCL performance on NVIDIA/AMD GPUs matches native CUDA/HIP for diverse workloads

See our blog post for more details on these benchmark results

https://codeplay.com/portal/blogs/2023/04/06/sycl-performance-for-nvidia-and-amd-gpus-matches-native-system-language


No compromises on 
performance.

SYCL performance on NVIDIA/AMD GPUs matches native CUDA/HIP for diverse workloads

See our blog post for more details on these benchmark results

https://codeplay.com/portal/blogs/2023/04/06/sycl-performance-for-nvidia-and-amd-gpus-matches-native-system-language


The code is entirely open source

Available as a free plugin download
at developer.codeplay.com
for selected platforms

Available to build from source
for other platforms

Open, cross-industry 
collaboration on standards.

https://github.com/intel/llvm
https://developer.codeplay.com/


Getting started – live demo

8



Get started

Set up the
prerequisites

Download
the oneAPI
Base Toolkit

Download the 
oneAPI for 

NVIDIA and 
AMD GPUs

Install the CUDA or HIP
development environment

and drivers

Get the toolkit from Intel
intel.com/developer

Get the plugins from
developer.codeplay.com



Live demo: installing the plugins

• Using the following setup:
• A machine with an NVIDIA GPU and an Intel iGPU
• Another machine with an AMD GPU
• Both with Ubuntu 22.04, Intel oneAPI Base Toolkit 2023.2.1, 

drivers and toolkits (CUDA/ROCm) for the GPUs installed

• We'll show:
• Checking the available GPUs with lshw -c video
• Checking GPU and driver details with nvidia-smi / rocm-smi
• Using sycl-ls to find supported SYCL backends
• Installing NVIDIA and AMD plugins for oneAPI

https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://developer.codeplay.com/products/oneapi/nvidia/download
https://developer.codeplay.com/products/oneapi/amd/download


Compiling
Basic compilation:
 icpx -fsycl -fsycl-targets=nvptx64-nvidia-cuda sycl-app.cpp -o sycl-app

Run the app with optional environment variables switching SYCL runtime options:
 ONEAPI_DEVICE_SELECTOR=cuda:gpu SYCL_PI_TRACE=1 ./sycl-app

Documentation of the runtime environment variables:
https://intel.github.io/llvm-docs/EnvironmentVariables.html

Use the SYCL 
compiler

Compile for 
NVIDIA

The source file The binary

Filter devices to
only use NVIDIA GPU

Set runtime 
verbosity level

http:// https:/intel.github.io/llvm-docs/EnvironmentVariables.html


Compiling

• Some features are not yet fully supported by the icpx compiler driver

• See developer.codeplay.com/products/oneapi/nvidia/2023.2.0/guides/troubleshooting

• If you wish to use them, it is possible to use the clang++ driver

• Set up the environment with:
 source /opt/intel/oneapi/setvars.sh --include-intel-llvm

• Use clang++ in the same way as icpx – the aforementioned CLI options are identical 
between the two

• icpx provides Intel's extra proprietary optimisations

https://developer.codeplay.com/products/oneapi/nvidia/2023.2.0/guides/troubleshooting


Live demo: compiling for a single target

• Example code:
• github.com/rafbiels/HeCBench/tree/nbody-sycl-demo/nbody-sycl
• See upstream repo for more details: github.com/zjin-lcf/HeCBench

• Compile for NVIDIA GPU:
icpx -fsycl -fsycl-targets=nvptx64-nvidia-cuda \
-Xsycl-target-backend --offload-arch=sm_86 \
-O3 -o main main.cpp GSimulation.cpp

• Compile for AMD GPU:
icpx -fsycl -fsycl-targets=amdgcn-amd-amdhsa \
-Xsycl-target-backend --offload-arch=gfx1010 \
-O3 -o main main.cpp GSimulation.cpp

• Run:
SYCL_PI_TRACE=1 ./main

Optionally set the GPU architecture to make the most out of 
your hardware. See these pages for the right values:
• https://developer.nvidia.com/cuda-gpus
• https://llvm.org/docs/AMDGPUUsage.html

Set the SYCL target to either nvptx64-nvidia-cuda 
or amdgcn-amd-amdhsa

Enable SYCL compilation

Add any other flags, e.g. the optimisation level

Optionally print debug info
about device selection

1

2

3

4

https://github.com/rafbiels/HeCBench/tree/nbody-sycl-demo/nbody-sycl
https://github.com/zjin-lcf/HeCBench
https://developer.nvidia.com/cuda-gpus
https://llvm.org/docs/AMDGPUUsage.html


Multi-Target Compilation

• Use a comma-separated list of targets for -fsycl-targets

• Specify a target for the backend options with -Xsycl-target-backend=<target>

Compile for 
NVIDIA

Compile for 
AMD

Compile for 
Intel

Set AMD 
architecture

Set NVIDIA 
architecture

icpx -fsycl -fsycl-targets=amdgcn-amd-amdhsa,nvptx64-nvidia-cuda,spir64 \

-Xsycl-target-backend=amdgcn-amd-amdhsa --offload-arch=gfx1010 \

-Xsycl-target-backend=nvptx64-nvidia-cuda --offload-arch=sm_86 \

-o sycl-app sycl-app.cpp



Multi-Target Compilation

ONEAPI_DEVICE_SELECTOR=cuda:gpu SYCL_PI_TRACE=1 ./sycl-app

ONEAPI_DEVICE_SELECTOR=hip:gpu SYCL_PI_TRACE=1 ./sycl-app

Tells the runtime 
to use NVIDIA 

GPU

Tells the runtime 
to use AMD GPU

This can also be 
done through 

device selectors 
in code

Executing the same binary on different target hardware

ONEAPI_DEVICE_SELECTOR=level_zero:gpu SYCL_PI_TRACE=1 ./sycl-app

ONEAPI_DEVICE_SELECTOR=opencl:gpu SYCL_PI_TRACE=1 ./sycl-app

Select Intel GPU with Level Zero or OpenCL backend:

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:device-selection


Live demo: multi-target compilation

• Compile for three targets:

 icpx -fsycl -fsycl-targets=amdgcn-amd-amdhsa,nvptx64-nvidia-cuda,spir64 \
-Xsycl-target-backend=amdgcn-amd-amdhsa --offload-arch=gfx1010 \
-Xsycl-target-backend=nvptx64-nvidia-cuda --offload-arch=sm_86 \
-O3 -o main main.cpp GSimulation.cpp

• objdump -h shows the binary contains an offload section for each target

• The default selector chooses an available backend

• Choose a specific backend with ONEAPI_DEVICE_SELECTOR
or with custom selectors in code



Debugging

• Use standard tooling for debugging

• Vendor-specific gdb extensions facilitate 
debugging device code: cuda-gdb for NVIDIA 
GPU and gdb-oneapi for Intel GPU

• rocgdb for AMD GPU currently not 
supported, discussion ongoing on upstreaming 
AMD support for device debug information to 
llvm

• GPU debuggers can be integrated with your 
favourite IDE just like the regular gdb or lldb



Debugging

• cuda-gdb might have some issues with certain calls generated by LLVM

• If you run into errors while debugging SYCL code, try starting cuda-gdb 
with CUDBG_USE_LEGACY_DEBUGGER=1

https://forums.developer.nvidia.com/t/cuda-gdb-cudbg-error-communication-failure-when-stepping-into-a-function-generated-by-llvm/239091


Live demo: debugging

• Compile for the NVIDIA target with -O0 and –g

• Launch the program in cuda-gdb

• List code, set a breakpoint, run the program

• Investigate the device state at breakpoint

• Print kernel stack variables and step through instructions



Profiling

Use AMD ROCProfiler to profile SYCL code
Use NVIDIA NSight Systems and
NSight Compute to profile SYCL code



Live demo: profiling

• Record standard NSight Systems profile: nsys profile ./main

• Analyse the profile in the GUI: nsys-ui report1.nsys-rep

• Record a selection of NSight Compute metrics:
ncu --section ComputeWorkloadAnalysis --section LaunchStats 
--section MemoryWorkloadAnalysis --section Occupancy 
--section SchedulerStats --section SpeedOfLight 
--section SpeedOfLight_RooflineChart -o ncu-profile ./main 16000 1

• Analyse the profile in the GUI: ncu-ui ncu-profile.ncu-rep

• Record ROCProfiler metrics: rocprof --sys-trace ./main

• Print the output CSV files, analyse the trace (results.json) in the web UI at 
https://ui.perfetto.dev

https://ui.perfetto.dev


Common Optimisations

• Choose an optimal work group size
• Read more in our blog post

• Follow recommended indexing of multi-dimensional arrays
• In SYCL the right-most index should vary the fastest

• Consider forcing the inlining for some functions

• Apply loop unrolling

• Avoid code path divergence between threads

• Ensure coalesced memory access
Our website contains 

guides for performance
developer.codeplay.com

http://sycl-performance-post-choosing-a-good-work-group-size-for-sycl.html
https://developer.codeplay.com/


Live demo: common optimisations

• Example project:
• github.com/rafbiels/sycl-crowd-simulation/tree/demo-optimisation

• Crowd simulation with live display, but comes also with a headless
-DPROFILING_MODE=ON

• Check for optimisation potential in NSight Systems

• Analyse detailed metrics for the "hot" kernel in NSight Compute

• Showcase an optimisation reducing branching and thread divergence

https://github.com/rafbiels/sycl-crowd-simulation/tree/demo-optimisation


Support for our plugins

Enterprise Support
(currently NVIDIA only)

Our highest level of support,
for large teams.

Direct access to Codeplay’s engineers
and expertise via scheduled calls.

A custom support plan tailored
to your requirements.

Priority Support
(currently NVIDIA only)

Suited to small teams and
individuals.

Access to a ticketed support desk.

Accelerated response time for
questions and requests.

Forum Support
(NVIDIA and AMD)

A public forum moderated by
Codeplay engineers.

Available for free.

Engage with the oneAPI community
and our engineers.

https://codeplay.com/company/contact/ https://support.codeplay.com

https://codeplay.com/company/contact/
https://support.codeplay.com/


Summary

• Using open standard oneAPI and SYCL brings you choice

• Possible to achieve performance portability with oneAPI and SYCL

• You can use Codeplay’s plugins to target NVIDIA and AMD GPUs today

• Possible to debug and profile SYCL code with NVIDIA and AMD tools



oneAPI Plugins for 
NVIDIA/AMD
Scan QR code or visit developer.codeplay.com



@codeplaysoft

@codeplaysoftware

codeplay-software

codeplay-software

Social Media

Don’t forget to follow us for the latest updates!



Performance varies by use, configuration and other factors.

Performance results are based on testing as of dates shown in 
configurations and may not reflect all publicly available updates. See 
backup for configuration details. 

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service 
activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel 
marks are trademarks of Intel Corporation or its subsidiaries. Other names 
and brands may be claimed as the property of others.

Disclaimers

A wee bit of legal


	Slide 1: Target NVIDIA and AMD with oneAPI and SYCL
	Slide 2
	Slide 3: Bringing oneAPI to NVIDIA and AMD GPUs
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Getting started – live demo
	Slide 9: Get started
	Slide 10: Live demo: installing the plugins
	Slide 11: Compiling
	Slide 12: Compiling
	Slide 13: Live demo: compiling for a single target
	Slide 14: Multi-Target Compilation
	Slide 15: Multi-Target Compilation
	Slide 16: Live demo: multi-target compilation
	Slide 17: Debugging
	Slide 18: Debugging
	Slide 19: Live demo: debugging
	Slide 20: Profiling
	Slide 21: Live demo: profiling
	Slide 22: Common Optimisations
	Slide 23: Live demo: common optimisations
	Slide 24: Support for our plugins
	Slide 25: Summary
	Slide 26
	Slide 27
	Slide 28

