® codeplay’

Target NVIDIA and AMD with oneAPI and SYCL

Rafal Bielski - Codeplay Software

14 September 2023

¢ codeplay’

Enabling Al & HPC To Be Open, Safe & Accessible To All

Established 2002 in
Edinburgh, Scotland.

Grown successfully to around
100 employees.

In 2022, we became a wholly
owned subsidiary of Intel.

p=2

Committed to expanding the
open ecosystem for
heterogeneous computing.

Through our involvement in
oneAPl and SYCL
governance, we help to
maintain and develop open
standards.

Developing at the forefront
of cutting-edge research.

Currently involved in two
research projects - SYCLOPS

and AERO, both funded by
the Horizon Europe Project.

® codeplay’ 2

Bringing oneAPI to NVIDIA and AMD GPUs

& 7 G

Write once. No compromises on Open, cross-industry
Run anywhere. performance. collaboration on standards.

Codeplay provides oneAPI plugins enabling SYCL to run on NVIDIA and AMD GPUs

® codeplay’

C++ / SYCL™ Source Code
@ i L

rYY YY

oneAPI Base Toolkit

Write once.
Run anywhere.

L 1L ey

oneAPI for
NVIDIA® GPUs

oneAPI for oneAPI for
AMD GPUS (peta) Intel® GPUs

Write code using SYCL, and then run freely
across Intel, NVIDIA and AMD GPUs

® codeplay’

On NVIDIA GPU - SYCL Provides Comparable Performance to CUDA

Relative Performance: Nvidia SYCL vs. Nvidia CUDA on Nvidia-A100
(CUDA =1.00)
(Higher is Better)

1.60
1.40
1.20

1.00

No compromises on 0.80
performance. 0.60

0.4

o

0.2

]

0.00

A Cudasift: higher SYCL perf. - efficient parallel computations
A DL-Mnist: lower SYCL perf. - not yet fully optimized

SYCL performance on NVIDIA/AMD GPUs matches native CUDA/HIP for diverse workloads

See our blog post for more details on these benchmark results

® codeplay’

https://codeplay.com/portal/blogs/2023/04/06/sycl-performance-for-nvidia-and-amd-gpus-matches-native-system-language

On AMD GPU - SYCL Provides Comparable Performance to HIP

Relative Performance: AMD SYCL vs. AMD HIP on AMD Instinct MI250 Accelerator
(HIP=1.00)
(Higher is Better)

2.00

1.50

No compromises on 098 0

1.93
102 0.98 105 0.98
" oo 95 0.95 088 0.91
perrormance.
0.
0.19

et & g B ¢ < & o~ 2 <

2 &S G ~\ & & A & & &
\QQ & @ \\((‘ N C}"\D P Q}Q b’.@

o
o

1.03
0.SSI OIB]I II
5 & o
E;‘"O ,C}\ \,(/
° v

0.00
@
& K
‘ Py Xy 2 o
& . eé\\ Rl Q:"{g < Q\x‘d‘ & o C,Jéo < L§ ©
4 <& &
"aﬁk o &
@
€ (’Jv Quicksilver: lower SYCL perf. - not yet fully optimized
EAMDSYCL ®mAMDHIP CudasSift: higher SYCL perf. - efficient parallel computations

Testing Date: Performance results are based ontesting by Intel as of Aprl 15, 2023 and may not reflect all publicly available updates.

1144. GPU: AMD Instinct MI250 OAM 5B Y
fsycl-targets=amdgen-amd-amdhse ycl-target-backend

SYCL performance on NVIDIA/AMD GPUs matches native CUDA/HIP for diverse workloads

See our blog post for more details on these benchmark results

® codeplay’

https://codeplay.com/portal/blogs/2023/04/06/sycl-performance-for-nvidia-and-amd-gpus-matches-native-system-language

N

Q@

O

The code is entirely open source

9 (#9271) |75

© 1158

Open, cross-industry Samsse Available as a free plugin download
cONAROration o standards. at developer.codeplay.com
for selected platforms

Available to build from source
for other platforms

® codeplay’

https://github.com/intel/llvm
https://developer.codeplay.com/

Getting started - live demo

Get started

Download the

Ble)WialleETle
Set up the oneAPI| for

e the oneAP]
prerequisites Bace Toolkit NVIDIA and
AMD GPUs
Install the CUDA or HIP Get the toolkit from Intel Get the plugins from

development environment intel.com/developer developer.codeplay.com
and drivers

® codeplay’

Live demo: installing the plugins

 Using the following setup:
* A machine with an NVIDIA GPU and an Intel iGPU
* Another machine with an AMD GPU

* Both with Ubuntu 22.04, Intel oneAP| Base Toolkit 2023.2.1,
drivers and toolkits (CUDA/ROCm) for the GPUs installed

 We'll show:

* Checking the available GPUs with 1shw -c video

« Checking GPU and driver details with nvidia-smi / rocm-smi
* Using sycl-1s to find supported SYCL backends

* Installing NVIDIA and AMD plugins for oneAPI

® codeplay’

https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html
https://developer.codeplay.com/products/oneapi/nvidia/download
https://developer.codeplay.com/products/oneapi/amd/download

Compiling

Basic compilation:
icpx -fsycl -fsycl-targets=nvptx64-nvidia-cuda sycl-app.cpp -0 sycl-app

Use the SYCL

Compile for
NVIDIA

The source file

compiler

Run the app with optional environment variables switching SYCL runtime options:
ONEAPI DEVICE SELECTOR=cuda:gpu SYCL_PI TRACE=1 ./sycl-app

Filter devices to Set runtime

only use NVIDIA GPU verbosity level

Documentation of the runtime environment variables:
https://intel.github.io/llvm-docs/EnvironmentVariables.html

® codeplay’

http:// https:/intel.github.io/llvm-docs/EnvironmentVariables.html

Compiling

» Some features are not yet fully supported by the icpx compiler driver

See developer.codeplay.com/products/oneapi/nvidia/2023.2.0/guides/troubleshooting

If you wish to use them, it is possible to use the clang++ driver

Set up the environment with:
source /opt/intel/oneapi/setvars.sh --include-intel-11lvm

Use clang++ in the same way as icpx - the aforementioned CLI options are identical
between the two

icpx provides Intel's extra proprietary optimisations

® codeplay’

https://developer.codeplay.com/products/oneapi/nvidia/2023.2.0/guides/troubleshooting

Live demo: compiling for a single target

Example code:
« github.com/rafbiels/HeCBench/tree/nbody-sycl-demo/nbody-sycl
« See upstream repo for more details: github.com/zjin-Icf/HeCBench

Compile for NVIDIA GPU:
icpx -fsycl -fsycl-targets=nvptx64-nvidia-cuda \ 1 Enable SYCL compilation
-Xsycl-target-backend --offload-arch=sm_86 \

-03 -0 main main.cpp GSimulation.cpp

Compile for AMD GPU:

icpx -fsycl -fsycl-targets=amdgcn-amd-amdhsa \
-Xsycl-target-backend --offload-arch=gfx1010 \
-03 -0 main main.cpp GSimulation.cpp

2 Set the SYCL target to either nvptx64-nvidia-cuda
or amdgcn-amd-amdhsa

Optionally set the GPU architecture to make the most out of
3 your hardware. See these pages for the right values:

* https://developer.nvidia.com/cuda-gpus
 Run: « https://llvm.org/docs/AMDGPUUsage.html

SYCL_PI _TRACE=1 ./main

Optionally print debug info

4 Add any other flags, e.g. the optimisation level
about device selection
® codeplay’

https://github.com/rafbiels/HeCBench/tree/nbody-sycl-demo/nbody-sycl
https://github.com/zjin-lcf/HeCBench
https://developer.nvidia.com/cuda-gpus
https://llvm.org/docs/AMDGPUUsage.html

Multi-Target Compilation

» Use a comma-separated list of targets for -fsycl-targets

» Specify a target for the backend options with -Xsycl-target-backend=<target>

Compile for Compile for Compile for
AMD NVIDIA Intel

icpx -fsycl -fsycl-targets=amdgcn-amd-amdhsa,nvptx64-nvidia-cuda,spir64 \

-Xsycl-target-backend=amdgcn-amd-amdhsa --offload-arch=gfx1010 \

-Xsycl-target-backend=nvptx64-nvidia-cuda --offload-arch=sm_86 \

Set AMD
architecture
Set NVIDIA
architecture

® codeplay’

-0 sycl-app sycl-app.cpp

Multi-Target Compilation

Executing the same binary on different target hardware

Tells the runtime
to use NVIDIA

This can also be
done through

ONEAPI_DEVICE_SELECTOR=cuda:gpu SYCL_PI_TRACE=1 ./sycl-app device selectors
..‘ in code

GPU

ONEAPI_DEVICE_SELECTOR=hip:gpu SYCL_PI_TRACE=1 ./sycl-app

Tells the runtime

to use AMD GPU

Select Intel GPU with Level Zero or OpenCL backend:

ONEAPI_DEVICE_SELECTOR=level zero:gpu SYCL PI TRACE=1 ./sycl-app
ONEAPI_DEVICE_SELECTOR=opencl:gpu SYCL PI TRACE=1 ./sycl-app

® codeplay’

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:device-selection

Live demo: multi-target compilation

» Compile for three targets:

icpx -fsycl -fsycl-targets=amdgcn-amd-amdhsa, ,Spire4d \
-Xsycl-target-backend=amdgcn-amd-amdhsa --offload-arch=gfx1010 \
-Xsycl-target-backend= --offload-arch= \

-03 -0 main main.cpp GSimulation.cpp

* objdump -h shows the binary contains an offload section for each target

e The default selector chooses an available backend

» Choose a specific backend with ONEAPI_DEVICE_SELECTOR
or with custom selectors in code

® codeplay’

Debugging

Use standard tooling for debugging

Vendor-specific gdb extensions facilitate
debugging device code: cuda-gdb for NVIDIA
GPU and gdb-oneapi for Intel GPU

rocgdb for AMD GPU currently not
supported, discussion ongoing on upstreaming
AMD support for device debug information to
llvm

GPU debuggers can be integrated with your
favourite IDE just like the regular gdb or 11db

® codeplay’

[Switching focus to CUDA kernel 1, grid 4, block (5,0,0), thread (32,0,0), device 0, sm 10, warp 0, lane 0]

Thread 1 "main" hit Breakpoint 1, main::{lambda(sycl:: V1::handler&)#5}::operator()(sycl:: V1::handler&) const
::{lambda(sycl::_V1::nd_item<1>)#1}::operator()(sycl::_V1::nd_item<1>) const (this=0x7fffa3fffb68, item=...) a
t main.cpp:115

115 float v = sycl::log(l+sycl::exp(-1*A_y_label[i]*xp));

(cuda-gdb) info cuda kernels

Kernel Parent Dev Grid Status SMs Mask GridDim BlockDim Invocation

0 4 Active 0x000EAPOAEEAEOAOOOS555555555555 (24,1,1) (256,1,1) typeinfo name for main::{lam
::_V1::handler&)#5}: :operator()(sycl::_V1::handler&) const::compute()
(cuda-gdb) list
110 for(int j = A_row_ptr[i]; j < A_row_ptr[i+1]; ++3){
xp += A_value[j] * x[A_col_index[j]];

}

// compute objective
float v = sycl::log(l+sycl::exp(-1*A_y_label[i]*xp));
auto atomic_obj_ref = atomic_ref<float,
memory_order::relaxed, memory_scope::device,
access: :address_space: :global_space> (total_obj_val[@]);
atomic_obj_ref.fetch_add(v);

access: :address_space: :global_space> (total_obj_val[@]);

(cuda-gdb) continue
Continuing.
[Switching focus to CUDA kernel 1, grid 4, block (0,0,0), thread (0,0,0), device @, sm @, warp 3, lane 0]

Thread 1 "main" hit Breakpoint 1, main::{lambda(sycl::_V1::handler&)#5}::operator()(sycl::_V1::handler&) const

float v = sycl::log(1l+sycl::exp(-1*A_y label[i]*xp));
(cuda-gdb) print xp
S4 = 0.0241964087
(cuda-gdb) []

Debugging

« cuda-gdb might have some issues with certain calls generated by LLVM

* |f you run into errors while debugging SYCL code, try starting cuda-gdb
with CUDBG_USE_LEGACY DEBUGGER=1

® codeplay’

https://forums.developer.nvidia.com/t/cuda-gdb-cudbg-error-communication-failure-when-stepping-into-a-function-generated-by-llvm/239091

Live demo: debugging

Compile for the NVIDIA target with -00 and -g

Launch the program in cuda-gdb

List code, set a breakpoint, run the program

Investigate the device state at breakpoint

Print kernel stack variables and step through instructions

® codeplay’

Profiling

Use NVIDIA NSight Systems and
NSight Compute to profile SYCL code Use AMD ROCProfiler to profile SYCL code

NVIDIA Nsight Compute (on ed-dlgpu-168c)
File Connection Debug Profile Tools Window Help
=) Connect Baselines > Metric Details
& gd-sycl-dbg.ncu-rep x
Page: Details ~ Result: 0- 136-compute ~ ¥~ AddBaseline ~ ApplyRules @ Occupancy Calculator Copy as Image ~

Result Time Cycles Regs GPU SM Frequency CC Process ® 60 0 6
Current 136 - compute (24, 1, 1)x(256, 1,1) 1.65 second 1,259,406,848 52 0-NVIDIA A100-PCIE-40GB 764.98 cycle/usecond 8.0 [3013141] main
~ Occupancy B ©

==

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another way to view occupancy is the percentage of the hardware’s
ability to process warps that is actively in use. Higher occupancy does not always result in higher performance, however, low occupancy always reduces the ability to hide latencies, resulting in
overall performance degradation. Large discrepancies between the theoretical and the achieved occupancy during execution typically indicates highly imbalanced workloads.

Theoretical Occupancy Block Limit Registers [block]

Theoretical Active Warps per SM [warp] Block Limit Shared Mem [block]

Achieved Occupancy .24 Block Limit Warps [block]

Achieved Active Warps Per SM [warp] Block Limit SM [block]

This kernel's theoretical occupancy (50.0%) is limited by the number of required registers. The difference between calculated theoretical (50.0%) and measured
A Occupancy Limiters achieved occupancy (12.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur
between warps within a block as well as across blocks of the same kernel. See the for more details on optimizing occupancy.

Impact of Varying Register Count Per Thread

o
3

Flow Events

~
]

Warp Occupancy
oA
R B

R OR
5 8 &

Registers Per Thread

)

Impact of Varying Block Size

Warp Occupancy

Block Size

® codeplay

Live demo: profiling

» Record standard NSight Systems profile: profile ./main
* Analyse the profile in the GUI: reportl.nsys-rep

» Record a selection of NSight Compute metrics:
--section ComputelWorkloadAnalysis --section LaunchStats
--section MemoryWorkloadAnalysis --section Occupancy
--section SchedulerStats --section SpeedOfLight

--section SpeedOfLight RooflineChart -o ncu-profile ./main 16000 1
* Analyse the profile in the GUI: ncu-profile.ncu-rep
» Record ROCProfiler metrics: rocprof --sys-trace ./main

* Print the output CSV files, analyse the trace (results.json) in the web Ul at
https://ui.perfetto.dev

® codeplay’

https://ui.perfetto.dev

Common Optimisations

» Choose an optimal work group size
« Read more in our blog post

* Follow recommended indexing of multi-dimensional arrays
* In SYCL the right-most index should vary the fastest

« Consider forcing the inlining for some functions
* Apply loop unrolling

* Avoid code path divergence between threads

Our website contains

 Ensure coalesced memory access guides for performance
developer.codeplay.com

® codeplay’

http://sycl-performance-post-choosing-a-good-work-group-size-for-sycl.html
https://developer.codeplay.com​/

Live demo: common optimisations

» Example project:
« github.com/rafbiels/sycl-crowd-simulation/tree/demo-optimisation

* Crowd simulation with live display, but comes also with a headless
-DPROFILING_MODE=0ON

» Check for optimisation potential in NSight Systems
» Analyse detailed metrics for the "hot" kernel in NSight Compute

» Showecase an optimisation reducing branching and thread divergence

® codeplay’

https://github.com/rafbiels/sycl-crowd-simulation/tree/demo-optimisation

Support for our plugins

@

¥in

Enterprise Support Priority Support Forum Support
(currently NVIDIA only) (currently NVIDIA only) (NVIDIA and AMD)
Our highest level of support, Suited to small teams and A public forum moderated by
for large teams. individuals. Codeplay engineers.
Direct access to Codeplay’s engineers Access to a ticketed support desk. Available for free.
and expertise via scheduled calls.

Accelerated response time for Engage with the oneAPI community

A custom support plan tailored questions and requests. and our engineers.

to your requirements.

https://codeplay.com/company/contact/ https://support.codeplay.com

® codeplay’

https://codeplay.com/company/contact/
https://support.codeplay.com/

Summary

« Using open standard oneAPI and SYCL brings you choice
 Possible to achieve performance portability with oneAPI and SYCL
 You can use Codeplay’s plugins to target NVIDIA and AMD GPUs today

» Possible to debug and profile SYCL code with NVIDIA and AMD tools

® codeplay’

f

oneAPI Plugins for
NAVAIDIVAVZAY 1D,

Scan QR code or visit developer.codeplay.com

f @codeplaysoft
® codeplay’

@codeplaysoftware

R

Social Media

Don't forget to follow us for the latest updates! u codeplay-software

codeplay-software

® codeplay’

Disclaimers

A wee bit of legal

Performance varies by use, configuration and other factors.
Performance results are based on testing as of dates shown in
configurations and may not reflect all publicly available updates. See
backup for configuration details.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service
activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel
marks are trademarks of Intel Corporation or its subsidiaries. Other names
and brands may be claimed as the property of others.

	Slide 1: Target NVIDIA and AMD with oneAPI and SYCL
	Slide 2
	Slide 3: Bringing oneAPI to NVIDIA and AMD GPUs
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Getting started – live demo
	Slide 9: Get started
	Slide 10: Live demo: installing the plugins
	Slide 11: Compiling
	Slide 12: Compiling
	Slide 13: Live demo: compiling for a single target
	Slide 14: Multi-Target Compilation
	Slide 15: Multi-Target Compilation
	Slide 16: Live demo: multi-target compilation
	Slide 17: Debugging
	Slide 18: Debugging
	Slide 19: Live demo: debugging
	Slide 20: Profiling
	Slide 21: Live demo: profiling
	Slide 22: Common Optimisations
	Slide 23: Live demo: common optimisations
	Slide 24: Support for our plugins
	Slide 25: Summary
	Slide 26
	Slide 27
	Slide 28

